友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

时间简史全集[1]-第4章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



因为这个非理性的信仰,他受到许多人的严厉批评,最有名的是贝克莱主教,他是一个
相信所有的物质实体、空间和时间都是虚妄的哲学家。当人们将贝克莱的见解告诉著名
的约翰逊博士时,他用脚尖踢到一块大石头上,并大声地说:“我要这样驳斥它!”
    亚里士多德和牛顿都相信绝对时间。也就是说,他们相信人们可以毫不含糊地测量
两个事件之间的时间间隔,只要用好的钟,不管谁去测量,这个时间都是一样的。时间
相对于空间是完全分开并独立的。这就是大部份人当作常识的观点。然而,我们必须改
变这种关于空间和时间的观念。虽然这种显而易见的常识可以很好地对付运动甚慢的诸
如苹果、行星的问题,但在处理以光速或接近光速运动的物体时却根本无效。
    光以有限但非常高的速度传播的这一事实,由丹麦的天文学家欧尔·克里斯琴森·
罗麦于1676年第一次发现。他观察到,木星的月亮不是以等时间间隔从木星背后出来,
不像如果月亮以不变速度绕木星运动时人们所预料的那样。当地球和木星都绕着太阳公
转时,它们之间的距离在变化着。罗麦注意到我们离木星越’远则木星的月食出现得越
晚。他的论点是,因为当我们离开更远时,光从木星月亮那儿要花更长的时间才能达到
我们这儿。然而,他测量到的木星到地球的距离变化不是非常准确,所以他的光速的数
值为每秒14    英哩,而现在的值为每秒186000英哩。尽管如此,罗麦不仅证明了光以
有限速度运动,并且测量了光速,他的成就是卓越的——要知道,这一切都是在牛顿发
表《数学原理》之前11年进行的。
    直到1865年,当英国的物理学家詹姆士·马克斯韦成功地将当时用以描述电力和磁
力的部分理论统一起来以后,才有了光传播的真正的理论。马克斯韦方程预言,在合并
的电磁场中可以存在波动的微扰,它们以固定的速度,正如池塘水面上的涟漪那样运动。
如果这些波的波长(两个波峰之间的距离)为1米或更长一些,这就是我们所谓的无线电
波。更短波长的波被称做微波(几个厘米)或红外线(长于万分之一厘米)。可见光的
波长在百万分之40到百万分之80厘米之间。更短的波长被称为紫外线、X射线和伽玛射线。
    马克斯韦理论预言,无线电波或光波应以某一固定的速度运动。但是牛顿理论已经
摆脱了绝对静止的观念,所以如果假定光是以固定的速度传播,人们必须说清这固定的
速度是相对于何物来测量的。这样人们提出,甚至在“真空”中也存在着一种无所不在
的称为“以太”的物体。正如声波在空气中一样,光波应该通过这以太传播,所以光速
应是相对于以太而言。相对于以太运动的不同观察者,应看到光以不同的速度冲他们而
来,但是光对以太的速度是不变的。特别是当地球穿过以太绕太阳公转时,在地球通过
以太运动的方向测量的光速(当我们对光源运动时)应该大于在与运动垂直方向测量的
光速(当我们不对光源运动时)。1887年,阿尔贝特·麦克尔逊(后来成为美国第一个
物理诺贝尔奖获得者)和爱德华·莫雷在克里夫兰的卡思应用科学学校进行了非常仔细
的实验。他们将在地球运动方向以及垂直于此方向的光速进行比较,使他们大为惊奇的
是,他们发现这两个光速完全一样!
    在1887年到1905年之间,人们曾经好几次企图去解释麦克尔逊——莫雷实验。最著
名者为荷兰物理学家亨得利克·罗洛兹,他是依据相对于以太运动的物体的收缩和钟变
慢的机制。然而,一位迄至当时还不知名的瑞士专利局的职员阿尔贝特·爱因斯坦,在
1905年的一篇著名的论文中指出,只要人们愿意抛弃绝对时间的观念的话,整个以太的
观念则是多余的。几个星期之后,一位法国最重要的数学家亨利·彭加勒也提出类似的
观点。爱因斯坦的论证比彭加勒的论证更接近物理,因为后者将此考虑为数学问题。通
常这个新理论是归功于爱因斯坦,但彭加勒的名字在其中起了重要的作用。
    这个被称之为相对论的基本假设是,不管观察者以任何速度作自由运动,相对于他
们而言,科学定律都应该是一样的。这对牛顿的运动定律当然是对的,但是现在这个观
念被扩展到包括马克斯韦理论和光速:不管观察者运动多快,他们应测量到一样的光速。
这简单的观念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,这可用爱因
斯坦著名的方程E=mc^2来表达(这儿E是能量,m是质量,c是光速),以及没有任何东
西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应
该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接
近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先
增加了0。5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物
体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。
实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,
这就需要无限大的能量才能做到。由于这个原因,相对论限制任何正常的物体永远以低
于光速的速度运动。只有光或其他没有内禀质量的波才能以光速运动。
    相对论的一个同等卓越的成果是,它变革了我们对空间和时间的观念。在牛顿理论
中,如果有一光脉冲从一处发到另一处,(由于时间是绝对的)不同的观测者对这个过
程所花的时间不会有异议,但是他们不会在光走过的距离这一点上取得一致的意见(因
为空间不是绝对的)。由于光速等于这距离除以所花的时间,不同的观察者就测量到不
同的光速。另一方面,在相对论中,所有的观察者必须在光是以多快的速度运动上取得
一致意见。然而,他们在光走过多远的距离上不能取得一致意见。所以现在他们对光要
花多少时间上也不会取得一致意见。(无论如何,光所花的时间正是用光速——这一点
所有的观察者都是一致的——去除光所走的距离——这一点对他们来说是不一致的。)
总之,相对论终结了绝对时间的观念!这样,每个观察者都有以自己所携带的钟测量的
时间,而不同观察者携带的同样的钟的读数不必要一致。



    图2。1时间用垂直坐标测量,离开观察者的距离用水平坐标测量。观察者在空间和时
间里的途径用左边的垂线表示。到事件去和从事件来的光线的途径用对角线表示。
    每个观察者都可以用雷达去发出光脉冲或无线电波来测定一个事件在何处何时发生。
脉冲的一部分由事件反射回来后,观察者可在他接收到回波时测量时间。事件的时间可
认为是发出脉冲和脉冲反射回来被接收的两个时刻的中点;而事件的距离可取这来回过
程时间的一半乘以光速。(在这意义上,一个事件是发生在指定空间的一点以及指定时
间的一点的某件事。)这个意思已显示在图2。1上。这是空间——时间图的一个例子。利
用这个步骤,作相互运动的观察者对同一事件可赋予不同的时间和位置。没有一个特别
的观察者的测量比任何其他人更正确,但所有这些测量都是相关的。只要一个观察者知
道其他人的相对速度,他就能准确算出其他人该赋予同一事件的时间和位置。
    现在我们正是用这种方法来准确地测量距离,因为我们可以比测量长度更为准确地
测量时间。实际上,米是被定义为光在以铂原子钟测量的O。        3335640952秒内走
过的距离(取这个特别的数字的原因是,因为它对应于历史上的米的定义——按照保存
在巴黎的特定铂棒上的两个刻度之间的距离)。同样,我们可以用叫做光秒的更方便更
新的长度单位,这就是简单地定义为光在一秒走过的距离。现在,我们在相对论中按照
时间和光速来定义距离,这样每个观察者都自动地测量出同样的光速(按照定义为每0。
        3335640952秒之1米)。没有必要引入以太的观念,正如麦克尔逊——莫雷实验
显示的那样,以太的存在是无论如何检测不到的。然而,相对论迫使我们从根本上改变
了对时间和空间的观念。我们必须接受的观念是:时间不能完全脱离和独立于空间,而
必须和空间结合在一起形成所谓的空间——时间的客体。
    我们通常的经验是可以用三个数或座标去描述空间中的一点的位置。譬如,人们可
以说屋子里的一点是离开一堵墙7英尺,离开另一堵墙3英尺,并且比地面高5英尺。人们
也可以用一定的纬度、经度和海拔来指定该点。人们可以自由地选用任何三个合适的坐
标,虽然它们只在有限的范围内有效。人们不是按照在伦敦皮卡迪里圆环以北和以西多
少英哩以及高于海平面多少英尺来指明月亮的位置,而是用离开太阳、离开行星轨道面
的距离以及月亮与太阳的连线和太阳与临近的一个恒星——例如α-半人马座——连线
之夹角来描述之。甚至这些座标对于描写太阳在我们星系中的位置,或我们星系在局部
星系群中的位置也没有太多用处。事实上,人们可以用一族互相交迭的坐标碎片来描写
整个宇宙。在每一碎片中,人们可用不同的三个座标的集合来指明点的位置。



    图2。2
    一个事件是发生于特定时刻和空间中特定的一点的某种东西。这样,人们可以用四
个数或座标来确定它,并且座标系的选择是任意的;人们可以用任何定义好的空间座标
和一个任意的时间测量。在相对论中,时间和空间座标没有真正的差别,犹如任何两个
空间座标没有真正的差别一样。譬如可以选择一族新的座标,使得第一个空间座标是旧
的第一和第二空间座标的组合。例如,测量地球上一点位置不用在伦敦皮卡迪里圆环以
北和以西的哩数,而是用在它的东北和西北的哩数。类似地,人们在相对论中可以用新
的时间座标,它是旧的时间(以秒作单位)加上往北离开皮卡迪里的距离(以光秒为单
位)。



    图2。3
    将一个事件的四座标作为在所谓的空间——时间的四维空间中指定其位置的手段经
常是有助的。对我来说,摹想三维空间已经足够困难!然而很容易画出二维空间图,例
如地球的表面。(地球的表面是两维的,因为它上面的点的位置可以用两个座标,例如
纬度和经度来确定。)通常我将使用二维图,向上增加的方向是时间,水平方向是其中
的一个空间座标。不管另外两个空间座标,或者有时用透视法将其中一个表示出来。
(这些被称为空间——时间图,如图2。1所示。)例如,在图2。2中时间是向上的,并以
年作单位,而沿着从太阳到α—半人马座连线的距离在水平方向上以英哩来测量。太阳
和α—半人马座通过空间——时间的途径是由图中的左边和右边的垂直线来表示。从太
阳发出的光线沿着对角线走,并且要花4年的时间才能从太阳走到α—半人马座。
    正如我们已经看到的,马克斯韦方程预言,不管光源的速度如何,光速应该是一样
的,这已被精密的测量所证实。这样,如果有一个光脉冲从一特定的空间的点在一特定
的时刻发出,在时间的进程中,它就会以光球面的形式发散开来,而光球面的形状和大
小与源的速度无关。在百万分之一秒后,光就散开成一个半径为300米的球面;百万分之
二秒后,半径变成600米;等等。这正如同将一块石头扔到池塘里,水表面的涟漪向四周
散开一样,涟漪以圆周的形式散开并越变越大。如果将三维模型设想为包括二维的池塘
水面和一维时间,这些扩大的水波的圆圈就画出一个圆锥,其顶点即为石头击到水面的
地方和时间(图2。3)。类似地,从一个事件散开的光在四维的空间——时间里形成了一
个三维的圆锥,这个圆锥称为事件的未来光锥。以同样的方法可以画出另一个称之为过
去光锥的圆锥,它表示所有可以用一光脉冲传播到该事件的事件的集合(图2。4)。



    图2。4
    一个事件P的过去和将来光锥将空间——时间分成三个区域(图2。5):这事件的绝
对将来是P的将来光锥的内部区域,这是所有可能被发生在P的事件影响的事件的集合。
返回目录 上一页 下一页 回到顶部 1 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!