ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
¾ÅÉ«Êé¼® ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

darwin and modern science-µÚ169ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




Stars¡¡and¡¡planets¡¡are¡¡formed¡¡of¡¡materials¡¡which¡¡yield¡¡to¡¡the¡¡enormous¡¡forces¡¡called¡¡into¡¡play¡¡by¡¡gravity¡¡and¡¡rotation¡£¡¡¡¡This¡¡is¡¡obviously¡¡true¡¡if¡¡they¡¡are¡¡gaseous¡¡or¡¡fluid£»¡¡and¡¡even¡¡solid¡¡matter¡¡becomes¡¡plastic¡¡under¡¡sufficiently¡¡great¡¡stresses¡£¡¡¡¡Nothing¡¡approaching¡¡a¡¡complete¡¡study¡¡of¡¡the¡¡equilibrium¡¡of¡¡a¡¡heterogeneous¡¡star¡¡has¡¡yet¡¡been¡¡found¡¡possible£»¡¡and¡¡we¡¡are¡¡driven¡¡to¡¡consider¡¡only¡¡bodies¡¡of¡¡simpler¡¡construction¡£¡¡¡¡I¡¡shall¡¡begin¡¡therefore¡¡by¡¡explaining¡¡what¡¡is¡¡known¡¡about¡¡the¡¡shapes¡¡which¡¡may¡¡be¡¡assumed¡¡by¡¡a¡¡mass¡¡of¡¡incompressible¡¡liquid¡¡of¡¡uniform¡¡density¡¡under¡¡the¡¡influences¡¡of¡¡gravity¡¡and¡¡of¡¡rotation¡£¡¡¡¡Such¡¡a¡¡liquid¡¡mass¡¡may¡¡be¡¡regarded¡¡as¡¡an¡¡ideal¡¡star£»¡¡which¡¡resembles¡¡a¡¡real¡¡star¡¡in¡¡the¡¡fact¡¡that¡¡it¡¡is¡¡formed¡¡of¡¡gravitating¡¡and¡¡rotating¡¡matter£»¡¡and¡¡because¡¡its¡¡shape¡¡results¡¡from¡¡the¡¡forces¡¡to¡¡which¡¡it¡¡is¡¡subject¡£¡¡¡¡It¡¡is¡¡unlike¡¡a¡¡star¡¡in¡¡that¡¡it¡¡possesses¡¡the¡¡attributes¡¡of¡¡incompressibility¡¡and¡¡of¡¡uniform¡¡density¡£¡¡¡¡The¡¡difference¡¡between¡¡the¡¡real¡¡and¡¡the¡¡ideal¡¡is¡¡doubtless¡¡great£»¡¡yet¡¡the¡¡similarity¡¡is¡¡great¡¡enough¡¡to¡¡allow¡¡us¡¡to¡¡extend¡¡many¡¡of¡¡the¡¡conclusions¡¡as¡¡to¡¡ideal¡¡liquid¡¡stars¡¡to¡¡the¡¡conditions¡¡which¡¡must¡¡hold¡¡good¡¡in¡¡reality¡£¡¡¡¡Thus¡¡with¡¡the¡¡object¡¡of¡¡obtaining¡¡some¡¡insight¡¡into¡¡actuality£»¡¡it¡¡is¡¡justifiable¡¡to¡¡discuss¡¡an¡¡avowedly¡¡ideal¡¡problem¡¡at¡¡some¡¡length¡£

The¡¡attraction¡¡of¡¡gravity¡¡alone¡¡tends¡¡to¡¡make¡¡a¡¡mass¡¡of¡¡liquid¡¡assume¡¡the¡¡shape¡¡of¡¡a¡¡sphere£»¡¡and¡¡the¡¡effects¡¡of¡¡rotation£»¡¡summarised¡¡under¡¡the¡¡name¡¡of¡¡centrifugal¡¡force£»¡¡are¡¡such¡¡that¡¡the¡¡liquid¡¡seeks¡¡to¡¡spread¡¡itself¡¡outwards¡¡from¡¡the¡¡axis¡¡of¡¡rotation¡£¡¡¡¡It¡¡is¡¡a¡¡singular¡¡fact¡¡that¡¡it¡¡is¡¡unnecessary¡¡to¡¡take¡¡any¡¡account¡¡of¡¡the¡¡size¡¡of¡¡the¡¡mass¡¡of¡¡liquid¡¡under¡¡consideration£»¡¡because¡¡the¡¡shape¡¡assumed¡¡is¡¡exactly¡¡the¡¡same¡¡whether¡¡the¡¡mass¡¡be¡¡small¡¡or¡¡large£»¡¡and¡¡this¡¡renders¡¡the¡¡statement¡¡of¡¡results¡¡much¡¡easier¡¡than¡¡would¡¡otherwise¡¡be¡¡the¡¡case¡£

A¡¡mass¡¡of¡¡liquid¡¡at¡¡rest¡¡will¡¡obviously¡¡assume¡¡the¡¡shape¡¡of¡¡a¡¡sphere£»¡¡under¡¡the¡¡influence¡¡of¡¡gravitation£»¡¡and¡¡it¡¡is¡¡a¡¡stable¡¡form£»¡¡because¡¡any¡¡oscillation¡¡of¡¡the¡¡liquid¡¡which¡¡might¡¡be¡¡started¡¡would¡¡gradually¡¡die¡¡away¡¡under¡¡the¡¡influence¡¡of¡¡friction£»¡¡however¡¡small¡£¡¡¡¡If¡¡now¡¡we¡¡impart¡¡to¡¡the¡¡whole¡¡mass¡¡of¡¡liquid¡¡a¡¡small¡¡speed¡¡of¡¡rotation¡¡about¡¡some¡¡axis£»¡¡which¡¡may¡¡be¡¡called¡¡the¡¡polar¡¡axis£»¡¡in¡¡such¡¡a¡¡way¡¡that¡¡there¡¡are¡¡no¡¡internal¡¡currents¡¡and¡¡so¡¡that¡¡it¡¡spins¡¡in¡¡the¡¡same¡¡way¡¡as¡¡if¡¡it¡¡were¡¡solid£»¡¡the¡¡shape¡¡will¡¡become¡¡slightly¡¡flattened¡¡like¡¡an¡¡orange¡£¡¡¡¡Although¡¡the¡¡earth¡¡and¡¡the¡¡other¡¡planets¡¡are¡¡not¡¡homogeneous¡¡they¡¡behave¡¡in¡¡the¡¡same¡¡way£»¡¡and¡¡are¡¡flattened¡¡at¡¡the¡¡poles¡¡and¡¡protuberant¡¡at¡¡the¡¡equator¡£¡¡¡¡This¡¡shape¡¡may¡¡therefore¡¡conveniently¡¡be¡¡described¡¡as¡¡planetary¡£

If¡¡the¡¡planetary¡¡body¡¡be¡¡slightly¡¡deformed¡¡the¡¡forces¡¡of¡¡restitution¡¡are¡¡slightly¡¡less¡¡than¡¡they¡¡were¡¡for¡¡the¡¡sphere£»¡¡the¡¡shape¡¡is¡¡stable¡¡but¡¡somewhat¡¡less¡¡so¡¡than¡¡the¡¡sphere¡£¡¡¡¡We¡¡have¡¡then¡¡a¡¡planetary¡¡spheroid£»¡¡rotating¡¡slowly£»¡¡slightly¡¡flattened¡¡at¡¡the¡¡poles£»¡¡with¡¡a¡¡high¡¡degree¡¡of¡¡stability£»¡¡and¡¡possessing¡¡a¡¡certain¡¡amount¡¡of¡¡rotational¡¡momentum¡£¡¡¡¡Let¡¡us¡¡suppose¡¡this¡¡ideal¡¡liquid¡¡star¡¡to¡¡be¡¡somewhere¡¡in¡¡stellar¡¡space¡¡far¡¡removed¡¡from¡¡all¡¡other¡¡bodies£»¡¡then¡¡it¡¡is¡¡subject¡¡to¡¡no¡¡external¡¡forces£»¡¡and¡¡any¡¡change¡¡which¡¡ensues¡¡must¡¡come¡¡from¡¡inside¡£¡¡¡¡Now¡¡the¡¡amount¡¡of¡¡rotational¡¡momentum¡¡existing¡¡in¡¡a¡¡system¡¡in¡¡motion¡¡can¡¡neither¡¡be¡¡created¡¡nor¡¡destroyed¡¡by¡¡any¡¡internal¡¡causes£»¡¡and¡¡therefore£»¡¡whatever¡¡happens£»¡¡the¡¡amount¡¡of¡¡rotational¡¡momentum¡¡possessed¡¡by¡¡the¡¡star¡¡must¡¡remain¡¡absolutely¡¡constant¡£

A¡¡real¡¡star¡¡radiates¡¡heat£»¡¡and¡¡as¡¡it¡¡cools¡¡it¡¡shrinks¡£¡¡¡¡Let¡¡us¡¡suppose¡¡then¡¡that¡¡our¡¡ideal¡¡star¡¡also¡¡radiates¡¡and¡¡shrinks£»¡¡but¡¡let¡¡the¡¡process¡¡proceed¡¡so¡¡slowly¡¡that¡¡any¡¡internal¡¡currents¡¡generated¡¡in¡¡the¡¡liquid¡¡by¡¡the¡¡cooling¡¡are¡¡annulled¡¡so¡¡quickly¡¡by¡¡fluid¡¡friction¡¡as¡¡to¡¡be¡¡insignificant£»¡¡further¡¡let¡¡the¡¡liquid¡¡always¡¡remain¡¡at¡¡any¡¡instant¡¡incompressible¡¡and¡¡homogeneous¡£¡¡All¡¡that¡¡we¡¡are¡¡concerned¡¡with¡¡is¡¡that£»¡¡as¡¡time¡¡passes£»¡¡the¡¡liquid¡¡star¡¡shrinks£»¡¡rotates¡¡in¡¡one¡¡piece¡¡as¡¡if¡¡it¡¡were¡¡solid£»¡¡and¡¡remains¡¡incompressible¡¡and¡¡homogeneous¡£¡¡¡¡The¡¡condition¡¡is¡¡of¡¡course¡¡artificial£»¡¡but¡¡it¡¡represents¡¡the¡¡actual¡¡processes¡¡of¡¡nature¡¡as¡¡well¡¡as¡¡may¡¡be£»¡¡consistently¡¡with¡¡the¡¡postulated¡¡incompressibility¡¡and¡¡homogeneity¡£¡¡¡¡£¨Mathematicians¡¡are¡¡accustomed¡¡to¡¡regard¡¡the¡¡density¡¡as¡¡constant¡¡and¡¡the¡¡rotational¡¡momentum¡¡as¡¡increasing¡£¡¡¡¡But¡¡the¡¡way¡¡of¡¡looking¡¡at¡¡the¡¡matter£»¡¡which¡¡I¡¡have¡¡adopted£»¡¡is¡¡easier¡¡of¡¡comprehension£»¡¡and¡¡it¡¡comes¡¡to¡¡the¡¡same¡¡in¡¡the¡¡end¡££©

The¡¡shrinkage¡¡of¡¡a¡¡constant¡¡mass¡¡of¡¡matter¡¡involves¡¡an¡¡increase¡¡of¡¡its¡¡density£»¡¡and¡¡we¡¡have¡¡therefore¡¡to¡¡trace¡¡the¡¡changes¡¡which¡¡supervene¡¡as¡¡the¡¡star¡¡shrinks£»¡¡and¡¡as¡¡the¡¡liquid¡¡of¡¡which¡¡it¡¡is¡¡composed¡¡increases¡¡in¡¡density¡£¡¡¡¡The¡¡shrinkage¡¡will£»¡¡in¡¡ordinary¡¡parlance£»¡¡bring¡¡the¡¡weights¡¡nearer¡¡to¡¡the¡¡axis¡¡of¡¡rotation¡£¡¡¡¡Hence¡¡in¡¡order¡¡to¡¡keep¡¡up¡¡the¡¡rotational¡¡momentum£»¡¡which¡¡as¡¡we¡¡have¡¡seen¡¡must¡¡remain¡¡constant£»¡¡the¡¡mass¡¡must¡¡rotate¡¡quicker¡£¡¡¡¡The¡¡greater¡¡speed¡¡of¡¡rotation¡¡augments¡¡the¡¡importance¡¡of¡¡centrifugal¡¡force¡¡compared¡¡with¡¡that¡¡of¡¡gravity£»¡¡and¡¡as¡¡the¡¡flattening¡¡of¡¡the¡¡planetary¡¡spheroid¡¡was¡¡due¡¡to¡¡centrifugal¡¡force£»¡¡that¡¡flattening¡¡is¡¡increased£»¡¡in¡¡other¡¡words¡¡the¡¡ellipticity¡¡of¡¡the¡¡planetary¡¡spheroid¡¡increases¡£

As¡¡the¡¡shrinkage¡¡and¡¡corresponding¡¡increase¡¡of¡¡density¡¡proceed£»¡¡the¡¡planetary¡¡spheroid¡¡becomes¡¡more¡¡and¡¡more¡¡elliptic£»¡¡and¡¡the¡¡succession¡¡of¡¡forms¡¡constitutes¡¡a¡¡family¡¡classified¡¡according¡¡to¡¡the¡¡density¡¡of¡¡the¡¡liquid¡£¡¡¡¡The¡¡specific¡¡mark¡¡of¡¡this¡¡family¡¡is¡¡the¡¡flattening¡¡or¡¡ellipticity¡£

Now¡¡consider¡¡the¡¡stability¡¡of¡¡the¡¡system£»¡¡we¡¡have¡¡seen¡¡that¡¡the¡¡spheroid¡¡with¡¡a¡¡slow¡¡rotation£»¡¡which¡¡forms¡¡our¡¡starting¡­point£»¡¡was¡¡slightly¡¡less¡¡stable¡¡than¡¡the¡¡sphere£»¡¡and¡¡as¡¡we¡¡proceed¡¡through¡¡the¡¡family¡¡of¡¡ever¡¡flatter¡¡ellipsoids¡¡the¡¡stability¡¡continues¡¡to¡¡diminish¡£¡¡¡¡At¡¡length¡¡when¡¡it¡¡has¡¡assumed¡¡the¡¡shape¡¡shown¡¡in¡¡a¡¡figure¡¡titled¡¡¡¨Planetary¡¡spheroid¡¡just¡¡becoming¡¡unstable¡¨¡¡£¨Fig¡£¡¡2¡££©¡¡where¡¡the¡¡equatorial¡¡and¡¡polar¡¡axes¡¡are¡¡proportional¡¡to¡¡the¡¡numbers¡¡1000¡¡and¡¡583£»¡¡the¡¡stability¡¡has¡¡just¡¡disappeared¡£¡¡¡¡According¡¡to¡¡the¡¡general¡¡principle¡¡explained¡¡above¡¡this¡¡is¡¡a¡¡form¡¡of¡¡bifurcation£»¡¡and¡¡corresponds¡¡to¡¡the¡¡form¡¡denoted¡¡A¡£¡¡¡¡The¡¡specific¡¡difference¡¡a¡¡of¡¡this¡¡family¡¡must¡¡be¡¡regarded¡¡as¡¡the¡¡excess¡¡of¡¡the¡¡ellipticity¡¡of¡¡this¡¡figure¡¡above¡¡that¡¡of¡¡all¡¡the¡¡earlier¡¡ones£»¡¡beginning¡¡with¡¡the¡¡slightly¡¡flattened¡¡planetary¡¡spheroid¡£¡¡¡¡Accordingly¡¡the¡¡specific¡¡difference¡¡a¡¡of¡¡the¡¡family¡¡has¡¡gradually¡¡diminished¡¡from¡¡the¡¡beginning¡¡and¡¡vanishes¡¡at¡¡this¡¡stage¡£

According¡¡to¡¡Poincare's¡¡principle¡¡the¡¡vanishing¡¡of¡¡the¡¡stability¡¡serves¡¡us¡¡with¡¡notice¡¡that¡¡we¡¡have¡¡reached¡¡a¡¡figure¡¡of¡¡bifurcation£»¡¡and¡¡it¡¡becomes¡¡necessary¡¡to¡¡inquire¡¡what¡¡is¡¡the¡¡nature¡¡of¡¡the¡¡specific¡¡difference¡¡of¡¡the¡¡new¡¡family¡¡of¡¡figures¡¡which¡¡must¡¡be¡¡coalescent¡¡with¡¡the¡¡old¡¡one¡¡at¡¡this¡¡stage¡£¡¡¡¡This¡¡difference¡¡is¡¡found¡¡to¡¡reside¡¡in¡¡the¡¡fact¡¡that¡¡the¡¡equator£»¡¡which¡¡in¡¡the¡¡planetary¡¡family¡¡has¡¡hitherto¡¡been¡¡circular¡¡in¡¡section£»¡¡tends¡¡to¡¡become¡¡elliptic¡£¡¡¡¡Hitherto¡¡the¡¡rotational¡¡momentum¡¡has¡¡been¡¡kept¡¡up¡¡to¡¡its¡¡constant¡¡value¡¡partly¡¡by¡¡greater¡¡speed¡¡of¡¡rotation¡¡and¡¡partly¡¡by¡¡a¡¡symmetrical¡¡bulging¡¡of¡¡the¡¡equator¡£¡¡¡¡But¡¡now¡¡while¡¡the¡¡speed¡¡of¡¡rotation¡¡still¡¡increases¡¡£¨The¡¡mathematician¡¡familiar¡¡with¡¡Jacobi's¡¡ellipsoid¡¡will¡¡find¡¡that¡¡this¡¡is¡¡correct£»¡¡although¡¡in¡¡the¡¡usual¡¡mode¡¡of¡¡exposition£»¡¡alluded¡¡to¡¡above¡¡in¡¡a¡¡footnote£»¡¡the¡¡speed¡¡diminishes¡££©£»¡¡the¡¡equator¡¡tends¡¡to¡¡bulge¡¡outwards¡¡at¡¡two¡¡diametrically¡¡opposite¡¡points¡¡and¡¡to¡¡be¡¡flattened¡¡midway¡¡between¡¡these¡¡protuberances¡£¡¡¡¡The¡¡specific¡¡difference¡¡in¡¡the¡¡new¡¡family£»¡¡denoted¡¡in¡¡the¡¡general¡¡sketch¡¡by¡¡b£»¡¡is¡¡this¡¡ellipticity¡¡of¡¡the¡¡equator¡£¡¡¡¡If¡¡we¡¡had¡¡traced¡¡the¡¡planetary¡¡figures¡¡with¡¡circular¡¡equators¡¡beyond¡¡this¡¡stage¡¡A£»¡¡we¡¡should¡¡have¡¡found¡¡them¡¡to¡¡have¡¡become¡¡unstable£»¡¡and¡¡the¡¡stability¡¡has¡¡been¡¡shunted¡¡off¡¡along¡¡the¡¡A¡¡£«¡¡b¡¡family¡¡of¡¡forms¡¡with¡¡elliptic¡¡equators¡£

This¡¡new¡¡series¡¡of¡¡figures£»¡¡generally¡¡named¡¡after¡¡the¡¡great¡¡mathematician¡¡Jacobi£»¡¡is¡¡at¡¡first¡¡only¡¡just¡¡stable£»¡¡but¡¡as¡¡the¡¡density¡¡increases¡¡the¡¡stability¡¡increases£»¡¡reaches¡¡a¡¡maximum¡¡and¡¡then¡¡declines¡£¡¡¡¡As¡¡this¡¡goes¡¡on¡¡the¡¡equator¡¡of¡¡these¡¡Jacobian¡¡figures¡¡becomes¡¡more¡¡and¡¡more¡¡elliptic£»¡¡so¡¡that¡¡the¡¡shape¡¡is¡¡considerably¡¡elongated¡¡in¡¡a¡¡direction¡¡at¡¡right¡¡angles¡¡to¡¡the¡¡axis¡¡of¡¡rotation¡£

At¡¡length¡¡when¡¡the¡¡longest¡¡axis¡¡of¡¡the¡¡three¡¡has¡¡become¡¡about¡¡three¡¡times¡¡as¡¡long¡¡as¡¡the¡¡shortest¡¡£¨The¡¡three¡¡axes¡¡of¡¡the¡¡ellipsoid¡¡are¡¡then¡¡proportional¡¡to¡¡1000£»¡¡432£»¡¡343¡££©£»¡¡the¡¡stability¡¡of¡¡this¡¡family¡¡of¡¡figures¡¡vanishes£»¡¡and¡¡we¡¡have¡¡reached¡¡a¡¡new¡¡form¡¡of¡¡bifurcation¡¡and¡¡must¡¡look¡¡for¡¡a¡¡new¡¡type¡¡of¡¡figure¡¡along¡¡which¡¡the¡¡stable¡¡development¡¡will¡¡presumably¡¡extend¡£¡¡¡¡Two¡¡sections¡¡of¡¡this¡¡critical¡¡Jacobian¡¡figure£»¡¡which¡¡is¡¡a¡¡figure¡¡of¡¡bifurcation£»¡¡are¡¡shown¡¡by¡¡the¡¡dotted¡¡lines¡¡in¡¡a¡¡figure¡¡titled¡¡¡¨The¡¡'pear¡­shaped¡¡figure'¡¡and¡¡the¡¡Jocobian¡¡figure¡¡from¡¡which¡¡it¡¡is¡¡derived¡¨¡¡£¨Fig¡£¡¡3¡££©¡¡comprising¡¡two¡¡figures£»¡¡one¡¡above¡¡the¡¡other£º¡¡¡¡the¡¡upper¡¡figure¡¡is¡¡the¡¡equatorial¡¡section¡¡at¡¡right¡¡angles¡¡to¡¡the¡¡axis¡¡of¡¡rotation£»¡¡the¡¡lower¡¡figure¡¡is¡¡a¡¡section¡¡through¡¡the¡¡axis¡£

Now¡¡Poincare¡¡has¡¡proved¡¡that¡¡the¡¡new¡¡type¡¡of¡¡figure¡¡is¡¡to¡¡be¡¡derived¡¡from¡¡the¡¡figure¡¡of¡¡bifurcation¡¡by¡¡causing¡¡one¡¡of¡¡the¡¡ends¡¡to¡¡be¡¡prolonged¡¡into¡¡a¡¡snout¡¡and¡¡by¡¡bluntening¡¡the¡¡other¡¡end¡£¡¡¡¡The¡¡snout¡¡forms¡¡a¡¡sort¡¡of¡¡stalk£»¡¡and¡¡between¡¡the¡¡stalk¡¡and¡¡the¡¡axis¡¡of¡¡rotation¡¡the¡¡surface¡¡is¡¡somewhat¡¡flattened¡£¡¡¡¡These¡¡are¡¡the¡¡characteristics¡¡of¡¡a¡¡pear£»¡¡and¡¡the¡¡figure¡¡has¡¡therefore¡¡been¡¡called¡¡the¡¡¡¨pear¡­shaped¡¡figure¡¡of¡¡equilibrium¡£¡¨¡¡¡¡The¡¡firm¡¡line¡¡shows¡¡
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡